

FACTORY OF ELECTRIC APPARATUS

EMA – ELFA Sp. z o.o. st Pocztowa 7, 63-500 Ostrzeszów, PL phone: +48 62 730 30 51 fax: +48 62 730 33 06 handel@ema-elfa.pl www.ema-elfa.pl



DEKR

# ELECTROMAGNETIC DISC BRAKES HSA, HS(Y) WITH CONSTANT BRAKING TORQUE

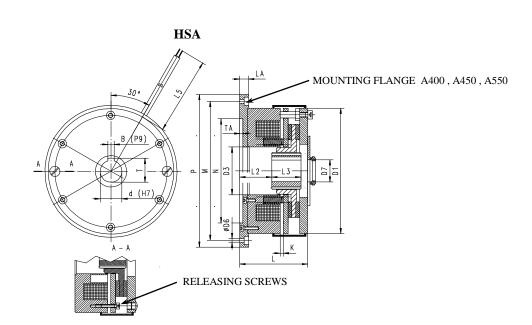


Spring actuated and electromagnetically released disk brake type HSA and HS(Y) powered by direct current. Designed for braking rotating machine parts and their precision positioning. Utilized as safety brake. High repeatability even with large number of actuations. The brake characterizes relatively simple construction, facility for regulating brake parameters such as braking torque, braking time and also possibility of supply from alternating current source after connecting up a rectifier circuit delivered at customer's request along with the brake. An additional feature is quiet operation, particularly important when the equipment is operated by a number of drives operating additionally with high frequency of actuations. Brake design guarantees simple and problem-free installation. Various options of executions are at disposal with respect to fittings/accessories, brake supply, climatic conditions of utilization, enabling selection of appropriate option for definite utilization conditions

# They are designed for braking rotating parts of machines and their task is:

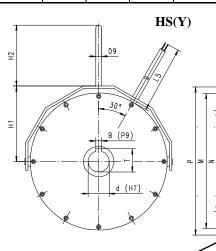
- emergency stopping, in order to ensure drive safety functions,
- immobilizing machine actuators, acting as a positioning device,
- minimizing run-on times of drives (to meed safety requirements according to Office of Technical Inspection (UDT) regulations)
- built onto an electric motor, the brake provides a self-braking motor, a drive unit meeting the requirements of utilisation safety and positioning.

Brakes can be manufactured in variants suitable for various direct-current voltages: 104V, 180V which allows them to be supplied from standard alternating current sources, through appropriate rectifier.


|            |                                |                  |                   | Brake                                                                                                                                                                      | e type             |  |  |  |  |
|------------|--------------------------------|------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
| Parameters |                                |                  | Unit              | HSA900 , HS(Y)900                                                                                                                                                          | HSA1600, HS(Y)1600 |  |  |  |  |
| Supply     | v voltage                      | Un               | [V]               | 104, 180                                                                                                                                                                   |                    |  |  |  |  |
| Power      | Power                          |                  | [W]               | 250                                                                                                                                                                        | 340                |  |  |  |  |
| Max. s     | Max. speed                     |                  | min <sup>-1</sup> | 3000                                                                                                                                                                       |                    |  |  |  |  |
| Brakin     | Braking torque                 |                  | [Nm]              | 1000                                                                                                                                                                       | 1600               |  |  |  |  |
| Weigh      | Weight                         |                  | [kg]              | 90                                                                                                                                                                         | 130                |  |  |  |  |
| Ambie      | ent temperature                | Т                | <sup>0</sup> C    | $-25 \div +40$                                                                                                                                                             |                    |  |  |  |  |
| *<br>0     | On direct voltage              | t <sub>0,1</sub> |                   | 400                                                                                                                                                                        | 600                |  |  |  |  |
| ii         | . side                         |                  | ms                | 300                                                                                                                                                                        | 500                |  |  |  |  |
| ng 1       | On alternating<br>voltage side |                  |                   | 400 600                                                                                                                                                                    |                    |  |  |  |  |
| Operatiı   |                                |                  | ms                | Brake disconnection on alternating current side causes about five-<br>times growth in braking time t <sub>09</sub> with respect to disconnection on<br>direct current side |                    |  |  |  |  |

t<sub>0,1</sub> - releasing time (from switching on current to drop in braking torque to 10% M<sub>nom</sub>)

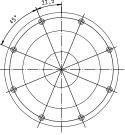
to,9 - braking time (from switching off current to attaining 90% Mnom)


\*) Values of releasing and braking times are given as approximations, since they depend on mode of assembly/installation, temperature and power supply.

K-EN-HSA-20151203



| ſ | TYPE     | D1  | D3  | D7 | L   | L2 | L3 | L5   | d  | <b>d</b> max | В  | Т    | K   |
|---|----------|-----|-----|----|-----|----|----|------|----|--------------|----|------|-----|
| Ī | HSA 900  | 340 | 146 | 58 | 174 | 80 | 70 | 1500 | 55 | 75           | 16 | 59,3 | 0,5 |
|   | HSA 1600 | 374 | 170 | 74 | 193 | 80 | 90 | 1500 | 70 | 100          | 20 | 74,9 | 0,5 |


TA



MOUNTING FLANGE A400 , A450 , A550

| ТҮРЕ      | D11 | D3  | D7 | D9 | L2 | L3 | L4  | L5   | L11 | H1  | H2  | d  | d <sub>max</sub> | Т  | Т    | K   |
|-----------|-----|-----|----|----|----|----|-----|------|-----|-----|-----|----|------------------|----|------|-----|
| HS(Y) 900 | 380 | 146 | 58 | 20 | 80 | 70 | 104 | 1500 | 190 | 233 | 433 | 55 | 75               | 16 | 59,3 | 0,5 |
| HS(Y)1600 | 430 | 170 | 74 | 24 | 80 | 90 | 125 | 1500 | 208 | 260 | 470 | 70 | 100              | 20 | 74,9 | 0,5 |

# MOUNTING FLANGES



MOUNTING FLANGE A450, A550

20

D7

<u>\_\_\_\_к</u> \_\_\_1

| TYPE | Μ   | Ν   | Р   | D6      | ТА | LA | POSSIBLE EXECUTION IN BRAKES |          |         | RAKES     |
|------|-----|-----|-----|---------|----|----|------------------------------|----------|---------|-----------|
| A400 | 350 | 300 | 400 | 4 x Ø18 | 6  | 30 | HSA900                       | HS(Y)900 |         |           |
| A450 | 400 | 350 | 450 | 8 x Ø18 | 6  | 30 | HSA900                       | HS(Y)900 | HSA1600 | HS(Y)1600 |
| A550 | 500 | 450 | 550 | 8 x Ø18 | 6  | 30 | HSA900                       | HS(Y)900 | HSA1600 | HS(Y)1600 |



K-EN-HSA-20151203

Page 3 from 6

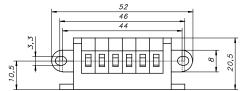
# ELECTRICAL EQUIPMENT

A number of modules, ranging from simple circuits with classic designs, to complex assemblies ensuring quick action and drives positioning have been designed to drive the brakes. Relevant brake applications with switching in the primary or secondary circuits are ensured by half- or full-wave rectifiers and fast electronic circuits. The manufacturer recommends to use as low alternating current voltages as possible to supply the brakes. Appropriate choice of the control voltage will prevent or at least limit surges that may occur in power supply circuits. It is not recommended to use extensively long control wiring, which would be a source of harmful surges.

# **Rectifier B5-1P**

The B5–1P rectifiers series forms a complete wave rectifier unit for direct installation. The terminal strip provided facilitates installation and connection to the circuit.

| <b>RECTIFIER PARAMETERS</b>                       |              |                      |                  |  |  |  |  |  |
|---------------------------------------------------|--------------|----------------------|------------------|--|--|--|--|--|
|                                                   |              | B5-1P-400            | B5-1P-600        |  |  |  |  |  |
| Maximum input voltage<br>(alternating voltage AC) | $U_{\rm IN}$ | 400 VAC              | 600 VAC          |  |  |  |  |  |
| Maximum output voltage<br>(direct voltage DC)     | Uout         | 0,45 U <sub>IN</sub> | $0,45U_{\rm IN}$ |  |  |  |  |  |
| Maximum continuous output<br>current rectifier    | IOUT         | 5A                   | 5A               |  |  |  |  |  |


# For example

Maximum input voltage (alternating voltage) -  $U_{IN} = 230$ VAC,

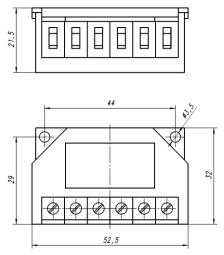
The resulting output voltage of the rectifier (direct voltage) -  $0.45 U_{IN} = 0.45 \times 230 = 104 \text{VDC}$ 

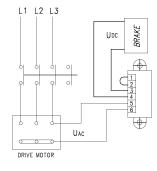
#### **Rectifiers dimensions**

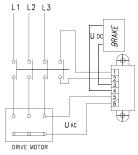
**B5-1P-400** 






# Disconnection of power supply on AC side


The diagram presents connection of rectifiers to supply circuit of motor. When disconnecting the voltage, the magnetic field causes the coil current to flow further through the rectifying diodes and drops slowly. The magnetic field reduces gradually causing prolonged time of braking action and consequently delayed increase of braking torque. If action time is irrelevant, brake should be connected on the AC side. When switching off, the supply circuits act as rectifying diodes.

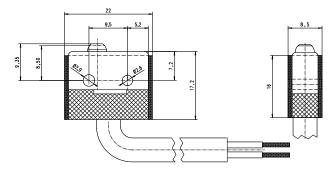

#### Disconnection of power supply on DC side

The diagram presents connection of rectifiers into electric motor circuit. The coil current is interrupted between the coil and supply (rectifier) circuit. The magnetic field reduces very quickly, **giving short time of braking action and consequently rapid growth of braking torque**. When switching off on DC voltage side, a high peak voltage is generated in the coil causing faster wear of contacts due to sparking. For protecting the coil against peak voltages and protecting the contacts against excessive wear, the rectifier circuit is provided with protective facility allowing brake connection on DC voltage side.










# **CONTROL AND SIGNALING CIRCUTS – microswitches**

Having in mind the user who requires the control of the brake, we have designed special signaling and control circuits, which enable to control the state of the brake (engaged, disengaged) and the wear of the plate lining. The usage of these circuits enables to control the brake with the use of automatic elements, which ensure high level of safety and reliability. Due to its compact design, the microswitch can be used in any other applications, as long as its parameters meet design requirements.

| MICROSWITCH                  | ES - ELECTRIC P | ARAMETERS                                                                      |  |  |
|------------------------------|-----------------|--------------------------------------------------------------------------------|--|--|
| Switch parameter             | Switch<br>KZ    | Switch<br>KO                                                                   |  |  |
| Max. voltage AC              | 250 V AC        | 250 V AC                                                                       |  |  |
| Max. AC switching<br>current | 5 A             | 6 A                                                                            |  |  |
| Max. Voltage DC              | 28V DC          | 220V DC                                                                        |  |  |
| Max. DC switching current    | 3 A / 28V DC    | 6A / 12V DC<br>3A / 24V DC<br>1A / 60V DC<br>0,5A / 110V DC<br>0,25A / 220V DC |  |  |
| Protection rating            | IP 66           | IP 66                                                                          |  |  |
| Terminals                    | NO /NC          | NO /NC                                                                         |  |  |

MICROSWITCH DIMENSIONS



**Response monitoring microswitch**  $- \mathbf{KZ}$  - control of the state of brake (engaged, disengaged),

**Microswitch of the brake lining control** –  $\mathbf{KO}$  – the microswitch indicates approaching the maximum wear of the brake disc and the necessity of the brake's regulation or replacement of the disc brake, which enables further work of the brake. The regulation procedure is described in the brake operating manual.

Response monitoring microswitch and microswitch of the brake lining control – KZ+KO



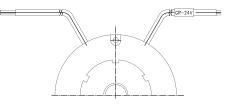
# **PROCTECTIVE CIRCUITS – thermal protection**

To protect electromagnet windings against heat build-up (slow-changing overloads) thermal sensor are used. In our offer we have PTC thermistors, which feature high resistance gradients when their rated temperature is reached - posistors - P or bimetallic thermal sensor - B.

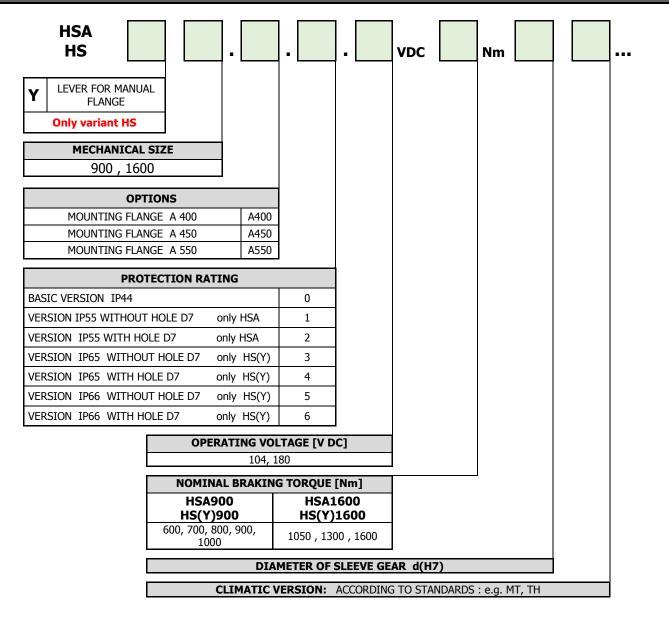
Posistor-based sensors are made in the form of an insulated pill with connecting wires extending inside a teflon insulation, installed directly on the electromagnet windings. Sensor circuit terminals are routed outside the brake to the terminal box and connected to a separate connection block or terminal strip. So-called resistance relays are intended for thermistor-based PTC temperature sensors. When temperature of at least one of the sensors rises above the rated value, the circuit resistance suddenly increases triggering the relay.

# Posistor thermal protection – P

# Note! PTC sensor terminals must not be connected directly to the contactor.


The brake protection has the form of a bimetallic sensor. Brake operation is controlled by a sensor or by a set of sensors, which ensure its safe operation; excessive temperature indication is obtained from the thermal switch installed inside the brake electromagnet's housing rated for a specific temperature. When the limit temperature for the sensor is exceeded, the information for the automatic control equipment is sent or the brake circuit is disconnected.

#### **Bimetallic thermal protection – B**


# **AUXILIARY CIRCUITS – anti-condensation heaters**

The so-called parking heating is used to prevent vapours condensation inside the brake. The equipment is particularly useful in negative temperatures or in high humidity environments. The heater is supplied through its dedicated pair of wires. The heater power supply voltage matches customer requirements. – <u>the need to define the voltage during order</u>.

Anti-condensation heaters – **GR** – **V** 



SAMPLE INSTALATION



# Execution options for the customer's request:

- non-standard diameter of the sleeve gear brake d(H7)
- equipped with heating elements in the winding
- (need to define the voltage supply) e.g. GR\_\_\_\_V
- work at low temperatures -40°C Z
- posistor thermal protection P
- bimetallic thermal protection B
- other voltage brake
- response monitoring microswitch (engaged, disengaged) KZ
- microswitch of the brake lining control KO
- microswitches set KZ+KO

# EXAMPLE:

HSA900 . A450 . 0 . 104VDC 800Nm d55 KZ+KO HSY1600 . A450 . 3 . 180VDC 1300Nm d70 GR110V

The producer reserves the right to modify as a result of developing the product. It is possible to realize special versions.

K-EN-HSA-20151203